Papers
Topics
Authors
Recent
2000 character limit reached

Holistic Uncertainty Estimation For Open-Set Recognition (2408.14229v2)

Published 26 Aug 2024 in cs.CV, cs.AI, and cs.LG

Abstract: Accurate uncertainty estimation is a critical challenge in open-set recognition, where a probe biometric sample may belong to an unknown identity. It can be addressed through sample quality estimation via probabilistic embeddings. However, the low variance of probabilistic embedding only partly implies a low identification error probability: an embedding of a sample could be close to several classes in a gallery, thus yielding high uncertainty despite high sample quality. We propose HolUE - a holistic uncertainty estimation method based on a Bayesian probabilistic model; it is aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of embeddings. Challenging open-set recognition datasets, such as IJB-C for the image domain and VoxBlink for the audio domain, serve as a testbed for our method. We also provide a new open-set recognition protocol for the identification of whales and dolphins. In all cases, HolUE better identifies recognition errors than alternative uncertainty estimation methods, including those based solely on sample quality.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.