Enhancing Depression Diagnosis with Chain-of-Thought Prompting (2408.14053v2)
Abstract: When using AI to detect signs of depressive disorder, AI models habitually draw preemptive conclusions. We theorize that using chain-of-thought (CoT) prompting to evaluate Patient Health Questionnaire-8 (PHQ-8) scores will improve the accuracy of the scores determined by AI models. In our findings, when the models reasoned with CoT, the estimated PHQ-8 scores were consistently closer on average to the accepted true scores reported by each participant compared to when not using CoT. Our goal is to expand upon AI models' understanding of the intricacies of human conversation, allowing them to more effectively assess a patient's feelings and tone, therefore being able to more accurately discern mental disorder symptoms; ultimately, we hope to augment AI models' abilities, so that they can be widely accessible and used in the medical field.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.