Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Conditional representation stability, classification of $*$-homomorphisms, and relative eta invariants (2408.13350v2)

Published 23 Aug 2024 in math.GR, math.KT, and math.OA

Abstract: A quasi-representation of a group is a map from the group into a matrix algebra (or similar object) that approximately satisfies the relations needed to be a representation. Work of many people starting with Kazhdan and Voiculescu, and recently advanced by Dadarlat, Eilers-Shulman-S\o{}rensen and others, has shown that there are topological obstructions to approximating unitary quasi-representations of groups by honest representations, where approximation' is understood to be with respect to the operator norm. The purpose of this paper is to explore whether approximation is possible if the known obstructions vanish, partially generalizing work of Gong-Lin and Eilers-Loring-Pedersen for the free abelian group of rank two, and the Klein bottle group. We show that this is possible, at least in a weak sense, for somelow-dimensional' groups including fundamental groups of closed surfaces, certain Baumslag-Solitar groups, free-by-cyclic groups, and many fundamental groups of three manifolds. The techniques used in the paper are $K$-theoretic: they have their origin in Baum-Connes-Kasparov type assembly maps, and in the Elliott program to classify $C*$-algebras; Kasparov's bivariant KK-theory is a crucial tool. The key new technical ingredients are: a stable uniqueness theorem in the sense of Dadarlat-Eilers and Lin that works for non-exact $C*$-algebras; and an analysis of maps on $K$-theory with finite coefficients in terms of the relative eta invariants of Atiyah-Patodi-Singer. Despite the proofs going through $K$-theoretic machinery, the main theorems can be stated in elementary terms that do not need any $K$-theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 27 likes.