Papers
Topics
Authors
Recent
2000 character limit reached

MergeUp-augmented Semi-Weakly Supervised Learning for WSI Classification (2408.12825v1)

Published 23 Aug 2024 in cs.CV

Abstract: Recent advancements in computational pathology and artificial intelligence have significantly improved whole slide image (WSI) classification. However, the gigapixel resolution of WSIs and the scarcity of manual annotations present substantial challenges. Multiple instance learning (MIL) is a promising weakly supervised learning approach for WSI classification. Recently research revealed employing pseudo bag augmentation can encourage models to learn various data, thus bolstering models' performance. While directly inheriting the parents' labels can introduce more noise by mislabeling in training. To address this issue, we translate the WSI classification task from weakly supervised learning to semi-weakly supervised learning, termed SWS-MIL, where adaptive pseudo bag augmentation (AdaPse) is employed to assign labeled and unlabeled data based on a threshold strategy. Using the "student-teacher" pattern, we introduce a feature augmentation technique, MergeUp, which merges bags with low-priority bags to enhance inter-category information, increasing training data diversity. Experimental results on the CAMELYON-16, BRACS, and TCGA-LUNG datasets demonstrate the superiority of our method over existing state-of-the-art approaches, affirming its efficacy in WSI classification.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.