Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Less is more: AI Decision-Making using Dynamic Deep Neural Networks for Short-Term Stock Index Prediction (2408.11740v1)

Published 21 Aug 2024 in q-fin.TR and q-fin.PM

Abstract: In this paper we introduce a multi-agent deep-learning method which trades in the Futures markets based on the US S&P 500 index. The method (referred to as Model A) is an innovation founded on existing well-established machine-learning models which sample market prices and associated derivatives in order to decide whether the investment should be long/short or closed (zero exposure), on a day-to-day decision. We compare the predictions with some conventional machine-learning methods namely, Long Short-Term Memory, Random Forest and Gradient-Boosted-Trees. Results are benchmarked against a passive model in which the Futures contracts are held (long) continuously with the same exposure (level of investment). Historical tests are based on daily daytime trading carried out over a period of 6 calendar years (2018-23). We find that Model A outperforms the passive investment in key performance metrics, placing it within the top quartile performance of US Large Cap active fund managers. Model A also outperforms the three machine-learning classification comparators over this period. We observe that Model A is extremely efficient (doing less and getting more) with an exposure to the market of only 41.95% compared to the 100% market exposure of the passive investment, and thus provides increased profitability with reduced risk.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 52 likes.

Upgrade to Pro to view all of the tweets about this paper: