Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Category-Theoretic Perspective on Higher-Order Approximation Fixpoint Theory (Extended Version) (2408.11712v1)

Published 21 Aug 2024 in cs.LO

Abstract: Approximation Fixpoint Theory (AFT) is an algebraic framework designed to study the semantics of non-monotonic logics. Despite its success, AFT is not readily applicable to higher-order definitions. To solve such an issue, we devise a formal mathematical framework employing concepts drawn from Category Theory. In particular, we make use of the notion of Cartesian closed category to inductively construct higher-order approximation spaces while preserving the structures necessary for the correct application of AFT. We show that this novel theoretical approach extends standard AFT to a higher-order environment, and generalizes the AFT setting of arXiv:1804.08335 .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: