A Category-Theoretic Perspective on Higher-Order Approximation Fixpoint Theory (Extended Version) (2408.11712v1)
Abstract: Approximation Fixpoint Theory (AFT) is an algebraic framework designed to study the semantics of non-monotonic logics. Despite its success, AFT is not readily applicable to higher-order definitions. To solve such an issue, we devise a formal mathematical framework employing concepts drawn from Category Theory. In particular, we make use of the notion of Cartesian closed category to inductively construct higher-order approximation spaces while preserving the structures necessary for the correct application of AFT. We show that this novel theoretical approach extends standard AFT to a higher-order environment, and generalizes the AFT setting of arXiv:1804.08335 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.