Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

High-Dimensional Overdispersed Generalized Factor Model with Application to Single-Cell Sequencing Data Analysis (2408.11272v1)

Published 21 Aug 2024 in stat.ME

Abstract: The current high-dimensional linear factor models fail to account for the different types of variables, while high-dimensional nonlinear factor models often overlook the overdispersion present in mixed-type data. However, overdispersion is prevalent in practical applications, particularly in fields like biomedical and genomics studies. To address this practical demand, we propose an overdispersed generalized factor model (OverGFM) for performing high-dimensional nonlinear factor analysis on overdispersed mixed-type data. Our approach incorporates an additional error term to capture the overdispersion that cannot be accounted for by factors alone. However, this introduces significant computational challenges due to the involvement of two high-dimensional latent random matrices in the nonlinear model. To overcome these challenges, we propose a novel variational EM algorithm that integrates Laplace and Taylor approximations. This algorithm provides iterative explicit solutions for the complex variational parameters and is proven to possess excellent convergence properties. We also develop a criterion based on the singular value ratio to determine the optimal number of factors. Numerical results demonstrate the effectiveness of this criterion. Through comprehensive simulation studies, we show that OverGFM outperforms state-of-the-art methods in terms of estimation accuracy and computational efficiency. Furthermore, we demonstrate the practical merit of our method through its application to two datasets from genomics. To facilitate its usage, we have integrated the implementation of OverGFM into the R package GFM.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.