Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Deep Reinforcement Learning for Network Energy Saving in 6G and Beyond Networks (2408.10974v1)

Published 20 Aug 2024 in cs.NI

Abstract: Network energy saving has received great attention from operators and vendors to reduce energy consumption and CO2 emissions to the environment as well as significantly reduce costs for mobile network operators. However, the design of energy-saving networks also needs to ensure the mobile users' (MUs) QoS requirements such as throughput requirements (TR). This work considers a mobile cellular network including many ground base stations (GBSs), and some GBSs are intentionally turned off due to network energy saving (NES) or crash, so the MUs located in these outage GBSs are not served in time. Based on this observation, we propose the problem of maximizing the total achievable throughput in the network by optimizing the GBSs' antenna tilt and adaptive transmission power with a given number of served MUs satisfied. Notice that, the MU is considered successfully served if its Reference Signal Received Power (RSRP) and throughput requirement are satisfied. The formulated optimization problem becomes difficult to solve with multiple binary variables and non-convex constraints along with random throughput requirements and random placement of MUs. We propose a Deep Q-learning-based algorithm to help the network learn the uncertainty and dynamics of the transmission environment. Extensive simulation results show that our proposed algorithm achieves much better performance than the benchmark schemes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.