Papers
Topics
Authors
Recent
2000 character limit reached

Neural Networks for Parameter Estimation in Geometrically Anisotropic Geostatistical Models (2408.10915v1)

Published 20 Aug 2024 in stat.ME

Abstract: This article presents a neural network approach for estimating the covariance function of spatial Gaussian random fields defined in a portion of the Euclidean plane. Our proposal builds upon recent contributions, expanding from the purely isotropic setting to encompass geometrically anisotropic correlation structures, i.e., random fields with correlation ranges that vary across different directions. We conduct experiments with both simulated and real data to assess the performance of the methodology and to provide guidelines to practitioners.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.