Papers
Topics
Authors
Recent
2000 character limit reached

A Tutorial on Explainable Image Classification for Dementia Stages Using Convolutional Neural Network and Gradient-weighted Class Activation Mapping (2408.10572v1)

Published 20 Aug 2024 in eess.IV, cs.AI, and cs.CV

Abstract: This paper presents a tutorial of an explainable approach using Convolutional Neural Network (CNN) and Gradient-weighted Class Activation Mapping (Grad-CAM) to classify four progressive dementia stages based on open MRI brain images. The detailed implementation steps are demonstrated with an explanation. Whilst the proposed CNN architecture is demonstrated to achieve more than 99% accuracy for the test dataset, the computational procedure of CNN remains a black box. The visualisation based on Grad-CAM is attempted to explain such very high accuracy and may provide useful information for physicians. Future motivation based on this work is discussed.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.