Papers
Topics
Authors
Recent
2000 character limit reached

A Graph-based Approach to Human Activity Recognition (2408.10191v1)

Published 19 Aug 2024 in cs.SE and cs.HC

Abstract: Advanced wearable sensor devices have enabled the recording of vast amounts of movement data from individuals regarding their physical activities. This data offers valuable insights that enhance our understanding of how physical activities contribute to improved physical health and overall quality of life. Consequently, there is a growing need for efficient methods to extract significant insights from these rapidly expanding real-time datasets. This paper presents a methodology to efficiently extract substantial insights from these expanding datasets, focusing on professional sports but applicable to various human activities. By utilizing data from Inertial Measurement Units (IMU) and Global Navigation Satellite Systems (GNSS) receivers, athletic performance can be analyzed using directed graphs to encode knowledge of complex movements. Our approach is demonstrated on biathlon data and detects specific points of interest and complex movement sequences, facilitating the comparison and analysis of human physical performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube