Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

UNINEXT-Cutie: The 1st Solution for LSVOS Challenge RVOS Track (2408.10129v2)

Published 19 Aug 2024 in cs.CV

Abstract: Referring video object segmentation (RVOS) relies on natural language expressions to segment target objects in video. In this year, LSVOS Challenge RVOS Track replaced the origin YouTube-RVOS benchmark with MeViS. MeViS focuses on referring the target object in a video through its motion descriptions instead of static attributes, posing a greater challenge to RVOS task. In this work, we integrate strengths of that leading RVOS and VOS models to build up a simple and effective pipeline for RVOS. Firstly, We finetune the state-of-the-art RVOS model to obtain mask sequences that are correlated with language descriptions. Secondly, based on a reliable and high-quality key frames, we leverage VOS model to enhance the quality and temporal consistency of the mask results. Finally, we further improve the performance of the RVOS model using semi-supervised learning. Our solution achieved 62.57 J&F on the MeViS test set and ranked 1st place for 6th LSVOS Challenge RVOS Track.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.