Papers
Topics
Authors
Recent
2000 character limit reached

Efficient onboard multi-task AI architecture based on self-supervised learning

Published 19 Aug 2024 in eess.IV | (2408.09754v1)

Abstract: There is growing interest towards the use of AI directly onboard satellites for quick analysis and rapid response to critical events such as natural disasters. This paper presents a blueprint to the mission designer for the development of a modular and efficient deep learning payload to address multiple onboard inference tasks. In particular, we design a self-supervised lightweight backbone that provides features to efficient task-specific heads. The latter can be developed independently and with reduced data labeling requirements thanks to the frozen backbone. Experiments on three sample tasks of cloud segmentation, flood detection, and marine debris classification on a 7W embedded system show competitive results with inference quality close to high-complexity state-of-the-art models and high throughput in excess of 8 Mpx/s.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.