Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Orchestrating Federated Learning in Space-Air-Ground Integrated Networks: Adaptive Data Offloading and Seamless Handover (2408.09522v1)

Published 18 Aug 2024 in cs.DC

Abstract: Devices located in remote regions often lack coverage from well-developed terrestrial communication infrastructure. This not only prevents them from experiencing high quality communication services but also hinders the delivery of machine learning services in remote regions. In this paper, we propose a new federated learning (FL) methodology tailored to space-air-ground integrated networks (SAGINs) to tackle this issue. Our approach strategically leverages the nodes within space and air layers as both (i) edge computing units and (ii) model aggregators during the FL process, addressing the challenges that arise from the limited computation powers of ground devices and the absence of terrestrial base stations in the target region. The key idea behind our methodology is the adaptive data offloading and handover procedures that incorporate various network dynamics in SAGINs, including the mobility, heterogeneous computation powers, and inconsistent coverage times of incoming satellites. We analyze the latency of our scheme and develop an adaptive data offloading optimizer, and also characterize the theoretical convergence bound of our proposed algorithm. Experimental results confirm the advantage of our SAGIN-assisted FL methodology in terms of training time and test accuracy compared with various baselines.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube