Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cooperative Federated Learning over Ground-to-Satellite Integrated Networks: Joint Local Computation and Data Offloading (2312.15361v1)

Published 23 Dec 2023 in cs.DC and cs.AI

Abstract: While network coverage maps continue to expand, many devices located in remote areas remain unconnected to terrestrial communication infrastructures, preventing them from getting access to the associated data-driven services. In this paper, we propose a ground-to-satellite cooperative federated learning (FL) methodology to facilitate machine learning service management over remote regions. Our methodology orchestrates satellite constellations to provide the following key functions during FL: (i) processing data offloaded from ground devices, (ii) aggregating models within device clusters, and (iii) relaying models/data to other satellites via inter-satellite links (ISLs). Due to the limited coverage time of each satellite over a particular remote area, we facilitate satellite transmission of trained models and acquired data to neighboring satellites via ISL, so that the incoming satellite can continue conducting FL for the region. We theoretically analyze the convergence behavior of our algorithm, and develop a training latency minimizer which optimizes over satellite-specific network resources, including the amount of data to be offloaded from ground devices to satellites and satellites' computation speeds. Through experiments on three datasets, we show that our methodology can significantly speed up the convergence of FL compared with terrestrial-only and other satellite baseline approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial Intelligence and Statistics, 2017, pp. 1273–1282.
  2. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
  3. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.
  4. S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive federated learning in resource constrained edge computing systems,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–1221, 2019.
  5. H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies for federated learning in wireless networks,” IEEE transactions on communications, vol. 68, no. 1, pp. 317–333, 2019.
  6. M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3546–3557, 2020.
  7. M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated learning over wireless networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 269–283, 2020.
  8. M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time optimization for federated learning over wireless networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 4, pp. 2457–2471, 2020.
  9. L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchical federated learning,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, pp. 1–6.
  10. M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin, “Hierarchical federated learning across heterogeneous cellular networks,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2020, pp. 8866–8870.
  11. W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung, and C. Miao, “Decentralized edge intelligence: A dynamic resource allocation framework for hierarchical federated learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 3, pp. 536–550, 2021.
  12. W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, C. Miao, and D. I. Kim, “Dynamic edge association and resource allocation in self-organizing hierarchical federated learning networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3640–3653, 2021.
  13. J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “Matcha: Speeding up decentralized sgd via matching decomposition sampling,” in 2019 Sixth Indian Control Conference (ICC).   IEEE, 2019, pp. 299–300.
  14. A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger, “Braintorrent: A peer-to-peer environment for decentralized federated learning,” arXiv preprint arXiv:1905.06731, 2019.
  15. A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentralized federated learning,” in Third workshop on Bayesian Deep Learning (NeurIPS), 2018.
  16. A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A unified theory of decentralized sgd with changing topology and local updates,” in International Conference on Machine Learning.   PMLR, 2020, pp. 5381–5393.
  17. Z. Song, Y. Hao, Y. Liu, and X. Sun, “Energy-efficient multiaccess edge computing for terrestrial-satellite internet of things,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 14 202–14 218, 2021.
  18. Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in leo satellite networks with hybrid cloud and edge computing,” IEEE Internet of Things Journal, vol. 8, no. 11, pp. 9164–9176, 2021.
  19. G. Cui, P. Duan, L. Xu, and W. Wang, “Latency optimization for hybrid geo-leo satellite assisted iot networks,” IEEE Internet of Things Journal, 2022.
  20. Q. Li, S. Wang, X. Ma, Q. Sun, H. Wang, S. Cao, and F. Yang, “Service coverage for satellite edge computing,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 695–705, 2021.
  21. C. Ding, J.-B. Wang, H. Zhang, M. Lin, and G. Y. Li, “Joint optimization of transmission and computation resources for satellite and high altitude platform assisted edge computing,” IEEE Transactions on Wireless Communications, vol. 21, no. 2, pp. 1362–1377, 2021.
  22. Y. Zhang, H. Zhang, K. Sun, J. Huo, N. Wang, and V. C. Leung, “Partial computation offloading in satellite based three-tier cloud-edge integration networks,” IEEE Transactions on Wireless Communications, 2023.
  23. F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, and M. Hangai, “A deep reinforcement learning-based dynamic traffic offloading in space-air-ground integrated networks (sagin),” IEEE Journal on Selected Areas in Communications, vol. 40, no. 1, pp. 276–289, 2021.
  24. J. So, K. Hsieh, B. Arzani, S. Noghabi, S. Avestimehr, and R. Chandra, “Fedspace: An efficient federated learning framework at satellites and ground stations,” arXiv preprint arXiv:2202.01267, 2022.
  25. B. Matthiesen, N. Razmi, I. Leyva-Mayorga, A. Dekorsy, and P. Popovski, “Federated learning in satellite constellations,” IEEE Network, 2023.
  26. N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “On-board federated learning for dense leo constellations,” in ICC 2022-IEEE International Conference on Communications.   IEEE, 2022, pp. 4715–4720.
  27. ——, “Scheduling for ground-assisted federated learning in leo satellite constellations,” pp. 1102–1106, 2022.
  28. ——, “Ground-assisted federated learning in leo satellite constellations,” IEEE Wireless Communications Letters, vol. 11, no. 4, pp. 717–721, 2022.
  29. M. Elmahallawy and T. Luo, “Fedhap: Fast federated learning for leo constellations using collaborative haps,” in 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP).   IEEE, 2022, pp. 888–893.
  30. Z. Zhai, Q. Wu, S. Yu, R. Li, F. Zhang, and X. Chen, “Fedleo: An offloading-assisted decentralized federated learning framework for low earth orbit satellite networks,” IEEE Transactions on Mobile Computing, 2023.
  31. M. Elmahallawy and T. Luo, “Optimizing federated learning in leo satellite constellations via intra-plane model propagation and sink satellite scheduling,” arXiv preprint arXiv:2302.13447, 2023.
  32. D.-J. Han, D.-Y. Kim, M. Choi, D. Nickel, J. Moon, M. Chiang, and C. G. Brinton, “Federated split learning with joint personalization-generalization for inference-stage optimization in wireless edge networks,” IEEE Transactions on Mobile Computing, 2023.
  33. D.-J. Han, M. Choi, J. Park, and J. Moon, “Fedmes: Speeding up federated learning with multiple edge servers,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3870–3885, 2021.
  34. Y. Wang, Z. Su, N. Zhang, and A. Benslimane, “Learning in the air: Secure federated learning for uav-assisted crowdsensing,” IEEE Transactions on network science and engineering, vol. 8, no. 2, pp. 1055–1069, 2020.
  35. H. Zhang and L. Hanzo, “Federated learning assisted multi-uav networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14 104–14 109, 2020.
  36. T. Zeng, O. Semiari, M. Mozaffari, M. Chen, W. Saad, and M. Bennis, “Federated learning in the sky: Joint power allocation and scheduling with uav swarms,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, pp. 1–6.
  37. T. K. Rodrigues and N. Kato, “Hybrid centralized and distributed learning for mec-equipped satellite 6g networks,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 4, pp. 1201–1211, 2023.
  38. H. Chen, M. Xiao, and Z. Pang, “Satellite-based computing networks with federated learning,” IEEE Wireless Communications, vol. 29, no. 1, pp. 78–84, 2022.
  39. Q. Fang, Z. Zhai, S. Yu, Q. Wu, X. Gong, and X. Chen, “Olive branch learning: A topology-aware federated learning framework for space-air-ground integrated network,” IEEE Transactions on Wireless Communications, 2023.
  40. Y. Wang, C. Zou, D. Wen, and Y. Shi, “Federated learning over leo satellite,” in 2022 IEEE Globecom Workshops (GC Wkshps).   IEEE, 2022, pp. 1652–1657.
  41. S. Wang, S. Hosseinalipour, M. Gorlatova, C. G. Brinton, and M. Chiang, “Uav-assisted online machine learning over multi-tiered networks: A hierarchical nested personalized federated learning approach,” IEEE Transactions on Network and Service Management, 2022.
  42. Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy efficient federated learning over wireless communication networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 1935–1949, 2020.
  43. C. T. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Y. Zomaya, and V. Gramoli, “Federated learning over wireless networks: Convergence analysis and resource allocation,” IEEE/ACM Transactions on Networking, vol. 29, no. 1, pp. 398–409, 2020.
  44. I. Leyva-Mayorga, B. Soret, and P. Popovski, “Inter-plane inter-satellite connectivity in dense leo constellations,” IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3430–3443, 2021.
  45. R. Deng, B. Di, S. Chen, S. Sun, and L. Song, “Ultra-dense leo satellite offloading for terrestrial networks: How much to pay the satellite operator?” IEEE Transactions on Wireless Communications, vol. 19, no. 10, pp. 6240–6254, 2020.
  46. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” in ICLR, 2020.
  47. Z.-L. Chang, S. Hosseinalipour, M. Chiang, and C. G. Brinton, “Asynchronous multi-model federated learning over wireless networks: Theory, modeling, and optimization,” arXiv preprint arXiv:2305.13503, 2023.
  48. A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2020, pp. 2021–2031.
  49. B. Ganguly, S. Hosseinalipour, K. T. Kim, C. G. Brinton, V. Aggarwal, D. J. Love, and M. Chiang, “Multi-edge server-assisted dynamic federated learning with an optimized floating aggregation point,” IEEE/ACM Transactions on Networking, 2023.
  50. Y. J. Cho, J. Wang, and G. Joshi, “Towards understanding biased client selection in federated learning,” in International Conference on Artificial Intelligence and Statistics.   PMLR, 2022, pp. 10 351–10 375.
  51. D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-sgd: Distributed sgd with quantization, sparsification and local computations,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  52. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450, 2020.
  53. “https://www.mathworks.com/help/aerotbx/ug/satellitescenario.walkerstar.html.”
Citations (9)

Summary

We haven't generated a summary for this paper yet.