Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Unified Smooth Vector Graphics: Modeling Gradient Meshes and Curve-based Approaches Jointly as Poisson Problem (2408.09211v2)

Published 17 Aug 2024 in cs.GR

Abstract: Research on smooth vector graphics is separated into two independent research threads: one on interpolation-based gradient meshes and the other on diffusion-based curve formulations. With this paper, we propose a mathematical formulation that unifies gradient meshes and curve-based approaches as solution to a Poisson problem. To combine these two well-known representations, we first generate a non-overlapping intermediate patch representation that specifies for each patch a target Laplacian and boundary conditions. Unifying the treatment of boundary conditions adds further artistic degrees of freedoms to the existing formulations, such as Neumann conditions on diffusion curves. To synthesize a raster image for a given output resolution, we then rasterize boundary conditions and Laplacians for the respective patches and compute the final image as solution to a Poisson problem. We evaluate the method on various test scenes containing gradient meshes and curve-based primitives. Since our mathematical formulation works with established smooth vector graphics primitives on the front-end, it is compatible with existing content creation pipelines and with established editing tools. Rather than continuing two separate research paths, we hope that a unification of the formulations will lead to new rasterization and vectorization tools in the future that utilize the strengths of both approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube