Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GLANCE: Graph-based Learnable Digital Twin for Communication Networks (2408.09040v1)

Published 16 Aug 2024 in cs.NI, cs.SY, and eess.SY

Abstract: As digital twins (DTs) to physical communication systems, network simulators can aid the design and deployment of communication networks. However, time-consuming simulations must be run for every new set of network configurations. Learnable digital twins (LDTs), in contrast, can be trained offline to emulate simulation outcomes and serve as a more efficient alternative to simulation-based DTs at runtime. In this work, we propose GLANCE, a communication LDT that learns from the simulator ns-3. It can evaluate network key performance indicators (KPIs) and assist in network management with exceptional efficiency. Leveraging graph learning, we exploit network data characteristics and devise a specialized architecture to embed sequential and topological features of traffic flows within the network. In addition, multi-task learning (MTL) and transfer learning (TL) are leveraged to enhance GLANCE's generalizability to unseen inputs and efficacy across different tasks. Beyond end-to-end KPI prediction, GLANCE can be deployed within an optimization framework for network management. It serves as an efficient or differentiable evaluator in optimizing network configurations such as traffic loads and flow destinations. Through numerical experiments and benchmarking, we verify the effectiveness of the proposed LDT architecture, demonstrate its robust generalization to various inputs, and showcase its efficacy in network management applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube