Controlling Statistical, Discretization, and Truncation Errors in Learning Fourier Linear Operators (2408.09004v2)
Abstract: We study learning-theoretic foundations of operator learning, using the linear layer of the Fourier Neural Operator architecture as a model problem. First, we identify three main errors that occur during the learning process: statistical error due to finite sample size, truncation error from finite rank approximation of the operator, and discretization error from handling functional data on a finite grid of domain points. Finally, we analyze a Discrete Fourier Transform (DFT) based least squares estimator, establishing both upper and lower bounds on the aforementioned errors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.