Uniform ergodic theorems for semigroup representations (2408.08961v1)
Abstract: We consider a bounded representation $T$ of a commutative semigroup $S$ on a Banach space and analyse the relation between three concepts: (i) properties of the unitary spectrum of $T$, which is defined in terms of semigroup characters on $S$; (ii) uniform mean ergodic properties of $T$; and (iii) quasi-compactness of $T$. We use our results to generalize the celebrated Niiro-Sawashima theorem to semigroup representations and, as a consequence, obtain the following: if a positive and bounded semigroup representation on a Banach lattice is uniformly mean ergodic and has finite-dimensional fixed space, then it is quasi-compact.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.