A holographic uniqueness theorem for the two-dimensional Helmholtz equation (2408.08326v1)
Abstract: We consider a plane wave, a radiation solution, and the sum of these solutions (total solution) for the Helmholtz equation in an exterior region in $\mathbb R2$. We consider a straight line in this region, such that the direction of propagation of the plane wave is not parallel to this line. We show that the radiation solution in the exterior region is uniquely determined by the intensity of the total solution on an interval of this line. In particular, this result solves one of the old mathematical questions of holography in its two-dimensional setting. Our proofs also contribute to the theory of the Karp expansion of radiation solutions in two dimensions.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.