Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Prompt-Based Segmentation at Multiple Resolutions and Lighting Conditions using Segment Anything Model 2 (2408.06970v4)

Published 13 Aug 2024 in cs.CV

Abstract: This paper provides insights on the effectiveness of the zero shot, prompt-based Segment Anything Model (SAM) and its updated versions, SAM 2 and SAM 2.1, along with the non-promptable conventional neural network (CNN), for segmenting solar panels in RGB aerial remote sensing imagery. The study evaluates these models across diverse lighting conditions, spatial resolutions, and prompt strategies. SAM 2 showed slight improvements over SAM, while SAM 2.1 demonstrated notable improvements, particularly in sub-optimal lighting and low resolution conditions. SAM models, when prompted by user-defined boxes, outperformed CNN in all scenarios; in particular, user-box prompts were found crucial for achieving reasonable performance in low resolution data. Additionally, under high resolution, YOLOv9 automatic prompting outperformed user-points prompting by providing reliable prompts to SAM. Under low resolution, SAM 2.1 prompted by user points showed similar performance to SAM 2.1 prompted by YOLOv9, highlighting its zero shot improvements with a single click. In high resolution with optimal lighting imagery, Eff-UNet outperformed SAMs prompted by YOLOv9, while under sub-optimal lighting conditions, Eff-UNet, and SAM 2.1 prompted by YOLOv9, had similar performance. However, SAM is more resource-intensive, and despite improved inference time of SAM 2.1, Eff-UNet is more suitable for automatic segmentation in high resolution data. This research details strengths and limitations of each model and outlines the robustness of user-prompted image segmentation models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: