Margin of Victory for Weighted Tournament Solutions (2408.06873v1)
Abstract: Determining how close a winner of an election is to becoming a loser, or distinguishing between different possible winners of an election, are major problems in computational social choice. We tackle these problems for so-called weighted tournament solutions by generalizing the notion of margin of victory (MoV) for tournament solutions by Brill et. al to weighted tournament solutions. For these, the MoV of a winner (resp. loser) is the total weight that needs to be changed in the tournament to make them a loser (resp. winner). We study three weighted tournament solutions: Borda's rule, the weighted Uncovered Set, and Split Cycle. For all three rules, we determine whether the MoV for winners and non-winners is tractable and give upper and lower bounds on the possible values of the MoV. Further, we axiomatically study and generalize properties from the unweighted tournament setting to weighted tournaments.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.