Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Margin of Victory for Weighted Tournament Solutions (2408.06873v1)

Published 13 Aug 2024 in cs.GT

Abstract: Determining how close a winner of an election is to becoming a loser, or distinguishing between different possible winners of an election, are major problems in computational social choice. We tackle these problems for so-called weighted tournament solutions by generalizing the notion of margin of victory (MoV) for tournament solutions by Brill et. al to weighted tournament solutions. For these, the MoV of a winner (resp. loser) is the total weight that needs to be changed in the tournament to make them a loser (resp. winner). We study three weighted tournament solutions: Borda's rule, the weighted Uncovered Set, and Split Cycle. For all three rules, we determine whether the MoV for winners and non-winners is tractable and give upper and lower bounds on the possible values of the MoV. Further, we axiomatically study and generalize properties from the unweighted tournament setting to weighted tournaments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.