Papers
Topics
Authors
Recent
2000 character limit reached

Wright's First-Order Logic of Strict Finitism

Published 12 Aug 2024 in math.LO | (2408.06271v1)

Abstract: A classical reconstruction of Wright's first-order logic of strict finitism is presented. Strict finitism is a constructive standpoint of mathematics that is more restrictive than intuitionism. Wright sketched the semantics of said logic in Wright (Realism, Meaning and Truth, chap 4, 2nd edition in 1993. Blackwell Publishers, Oxford, Cambridge, pp.107-75, 1982), in his strict finitistic metatheory. Yamada (J Philos Log. https://doi.org/10.1007/s10992-022-09698-w, 2023) proposed, as its classical reconstruction, a propositional logic of strict finitism under an auxiliary condition that makes the logic correspond with intuitionistic propositional logic. In this paper, we extend the propositional logic to a first-order logic that does not assume the condition. We will provide a sound and complete pair of a Kripke-style semantics and a natural deduction system, and show that if the condition is imposed, then the logic exhibits natural extensions of Yamada (2023)'s results.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 6 likes about this paper.