Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

You Augment Me: Exploring ChatGPT-based Data Augmentation for Semantic Code Search (2408.05542v2)

Published 10 Aug 2024 in cs.SE

Abstract: Code search plays a crucial role in software development, enabling developers to retrieve and reuse code using natural language queries. While the performance of code search models improves with an increase in high-quality data, obtaining such data can be challenging and expensive. Recently, LLMs such as ChatGPT have made remarkable progress in both natural and programming language understanding and generation, offering user-friendly interaction via simple prompts. Inspired by these advancements, we propose a novel approach ChatDANCE, which utilizes high-quality and diverse augmented data generated by a LLM and leverages a filtering mechanism to eliminate low-quality augmentations. Specifically, we first propose a set of ChatGPT prompting rules that are specifically designed for source code and queries. Then, we leverage ChatGPT to rewrite code and queries based on the according prompts and then propose a filtering mechanism which trains a cross-encoder from the backbone model UniXcoder to filter out code and query pairs with low matching scores. Finally, we re-train the backbone model using the obtained high-quality augmented data. Experimental results show that ChatDANCE achieves state-of-the-art performance, improving the best baseline by 13.2% (R@1) and 7% (MRR). Surprisingly, we find that this augment-filter-retrain strategy enables the backbone model (UniXcoder) to self-grow. Moreover, extensive experiments show the effectiveness of each component and ChatDANCE has stable performance under different hyperparameter settings. In addition, we conduct qualitative and quantitative analyses to investigate why ChatDANCE works well and find that it learns a more uniform distribution of representations and effectively aligns the code and query spaces.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: