Papers
Topics
Authors
Recent
2000 character limit reached

Beyond the Neural Fog: Interpretable Learning for AC Optimal Power Flow (2408.05228v2)

Published 30 Jul 2024 in eess.SY, cs.LG, cs.SY, and math.OC

Abstract: The AC optimal power flow (AC-OPF) problem is essential for power system operations, but its non-convex nature makes it challenging to solve. A widely used simplification is the linearized DC optimal power flow (DC-OPF) problem, which can be solved to global optimality, but whose optimal solution is always infeasible in the original AC-OPF problem. Recently, neural networks (NN) have been introduced for solving the AC-OPF problem at significantly faster computation times. However, these methods necessitate extensive datasets, are difficult to train, and are often viewed as black boxes, leading to resistance from operators who prefer more transparent and interpretable solutions. In this paper, we introduce a novel learning-based approach that merges simplicity and interpretability, providing a bridge between traditional approximation methods and black-box learning techniques. Our approach not only provides transparency for operators but also achieves competitive accuracy. Numerical results across various power networks demonstrate that our method provides accuracy comparable to, and often surpassing, that of neural networks, particularly when training datasets are limited.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.