Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tensor Reduction for Feynman Integrals with Lorentz and Spinor Indices (2408.05137v2)

Published 9 Aug 2024 in hep-ph and hep-th

Abstract: We present an efficient graphical approach to construct projectors for the tensor reduction of multi-loop Feynman integrals with both Lorentz and spinor indices in $D$ dimensions. An ansatz for the projectors is constructed making use of its symmetry properties via an orbit partition formula. The graphical approach allows to identify and enumerate the orbits in each case. For the case without spinor indices we find a 1 to 1 correspondence between orbits and integer partitions describing the cycle structure of certain bi-chord graphs. This leads to compact combinatorial formulae for the projector ansatz. With spinor indices the graph-structure becomes more involved, but the method is equally applicable. Our spinor reduction formulae are based on the antisymmetric basis of $\gamma$ matrices, and make use of their orthogonality property. We also provide a new compact formula to pass into the antisymmetric basis. We compute projectors for vacuum tensor Feynman integrals with up to 32 Lorentz indices and up to 4 spinor indices. We discuss how to employ the projectors in problems with external momenta.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.