Papers
Topics
Authors
Recent
2000 character limit reached

Towards a Generative Approach for Emotion Detection and Reasoning

Published 9 Aug 2024 in cs.CL and cs.AI | (2408.04906v1)

Abstract: LLMs have demonstrated impressive performance in mathematical and commonsense reasoning tasks using chain-of-thought (CoT) prompting techniques. But can they perform emotional reasoning by concatenating `Let's think step-by-step' to the input prompt? In this paper we investigate this question along with introducing a novel approach to zero-shot emotion detection and emotional reasoning using LLMs. Existing state of the art zero-shot approaches rely on textual entailment models to choose the most appropriate emotion label for an input text. We argue that this strongly restricts the model to a fixed set of labels which may not be suitable or sufficient for many applications where emotion analysis is required. Instead, we propose framing the problem of emotion analysis as a generative question-answering (QA) task. Our approach uses a two step methodology of generating relevant context or background knowledge to answer the emotion detection question step-by-step. Our paper is the first work on using a generative approach to jointly address the tasks of emotion detection and emotional reasoning for texts. We evaluate our approach on two popular emotion detection datasets and also release the fine-grained emotion labels and explanations for further training and fine-tuning of emotional reasoning systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.