Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CTE-MLO: Continuous-time and Efficient Multi-LiDAR Odometry with Localizability-aware Point Cloud Sampling (2408.04901v2)

Published 9 Aug 2024 in cs.RO

Abstract: In recent years, LiDAR-based localization and mapping methods have achieved significant progress thanks to their reliable and real-time localization capability. Considering single LiDAR odometry often faces hardware failures and degeneracy in practical scenarios, Multi-LiDAR Odometry (MLO), as an emerging technology, is studied to enhance the performance of LiDAR-based localization and mapping systems. However, MLO can suffer from high computational complexity introduced by dense point clouds that are fused from multiple LiDARs, and the continuous-time measurement characteristic is constantly neglected by existing LiDAR odometry. This motivates us to develop a Continuous-Time and Efficient MLO, namely CTE-MLO, which can achieve accurate and real-time estimation using multi-LiDAR measurements through a continuous-time perspective. In this paper, the Gaussian process estimation is naturally combined with the Kalman filter, which enables each LiDAR point in a point stream to query the corresponding continuous-time trajectory using its time instants. A decentralized multi-LiDAR synchronization scheme is also devised to combine points from separate LiDARs into a single point cloud without the primary LiDAR assignment. Moreover, with the aim of improving the real-time performance of MLO without sacrificing robustness, a point cloud sampling strategy is designed with the consideration of localizability. To this end, CTE-MLO integrates synchronization, localizability-aware sampling, continuous-time estimation, and voxel map management within a Kalman filter framework, which can achieve high accuracy and robust continuous-time estimation within only a few linear iterations. The effectiveness of the proposed method is demonstrated through various scenarios, including public datasets and real-world applications. The code is available at https://github.com/shenhm516/CTE-MLO to benefit the community.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com