Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Size Should not Matter: Scale-invariant Stress Metrics (2408.04688v1)

Published 8 Aug 2024 in cs.CG

Abstract: The normalized stress metric measures how closely distances between vertices in a graph drawing match the graph-theoretic distances between those vertices. It is one of the most widely employed quality metrics for graph drawing, and is even the optimization goal of several popular graph layout algorithms. However, normalized stress can be misleading when used to compare the outputs of two or more algorithms, as it is sensitive to the size of the drawing compared to the graph-theoretic distances used. Uniformly scaling a layout will change the value of stress despite not meaningfully changing the drawing. In fact, the change in stress values can be so significant that a clearly better layout can appear to have a worse stress score than a random layout. In this paper, we study different variants for calculating stress used in the literature (raw stress, normalized stress, etc.) and show that many of them are affected by this problem, which threatens the validity of experiments that compare the quality of one algorithm to that of another. We then experimentally justify one of the stress calculation variants, scale-normalized stress, as one that fairly compares drawing outputs regardless of their size. We also describe an efficient computation for scale-normalized stress and provide an open source implementation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.