Papers
Topics
Authors
Recent
2000 character limit reached

Geometric bounds for low Steklov eigenvalues of finite volume hyperbolic surfaces (2408.04534v2)

Published 8 Aug 2024 in math.DG and math.SP

Abstract: We obtain geometric lower bounds for the low Steklov eigenvalues of finite-volume hyperbolic surfaces with geodesic boundary. The bounds we obtain depend on the length of a shortest multi-geodesic disconnecting the surfaces into connected components each containing a boundary component and the rate of dependency on it is sharp. Our result also identifies situations when the bound is independent of the length of this multi-geodesic. The bounds also hold when the Gaussian curvature is bounded between two negative constants and can be viewed as a counterpart of the well-known Schoen-Wolpert-Yau inequality for Laplace eigenvalues. The proof is based on analysing the behaviour of the {corresponding Steklov} eigenfunction on an adapted version of thick-thin decomposition for hyperbolic surfaces with geodesic boundary. Our results extend and improve the previously known result in the compact case obtained by a different method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.