Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

No-Reference Image Quality Assessment with Global-Local Progressive Integration and Semantic-Aligned Quality Transfer (2408.03885v2)

Published 7 Aug 2024 in cs.CV and eess.IV

Abstract: Accurate measurement of image quality without reference signals remains a fundamental challenge in low-level visual perception applications. In this paper, we propose a global-local progressive integration model that addresses this challenge through three key contributions: 1) We develop a dual-measurement framework that combines vision Transformer (ViT)-based global feature extractor and convolutional neural networks (CNNs)-based local feature extractor to comprehensively capture and quantify image distortion characteristics at different granularities. 2) We propose a progressive feature integration scheme that utilizes multi-scale kernel configurations to align global and local features, and progressively aggregates them via an interactive stack of channel-wise self-attention and spatial interaction modules for multi-grained quality-aware representations. 3) We introduce a semantic-aligned quality transfer method that extends the training data by automatically labeling the quality scores of diverse image content with subjective opinion scores. Experimental results demonstrate that our model yields 5.04% and 5.40% improvements in Spearman's rank-order correlation coefficient (SROCC) for cross-authentic and cross-synthetic dataset generalization tests, respectively. Furthermore, the proposed semantic-aligned quality transfer further yields 2.26% and 13.23% performance gains in evaluations on single-synthetic and cross-synthetic datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com