Papers
Topics
Authors
Recent
2000 character limit reached

Understanding How Blind Users Handle Object Recognition Errors: Strategies and Challenges (2408.03303v1)

Published 6 Aug 2024 in cs.HC and cs.AI

Abstract: Object recognition technologies hold the potential to support blind and low-vision people in navigating the world around them. However, the gap between benchmark performances and practical usability remains a significant challenge. This paper presents a study aimed at understanding blind users' interaction with object recognition systems for identifying and avoiding errors. Leveraging a pre-existing object recognition system, URCam, fine-tuned for our experiment, we conducted a user study involving 12 blind and low-vision participants. Through in-depth interviews and hands-on error identification tasks, we gained insights into users' experiences, challenges, and strategies for identifying errors in camera-based assistive technologies and object recognition systems. During interviews, many participants preferred independent error review, while expressing apprehension toward misrecognitions. In the error identification task, participants varied viewpoints, backgrounds, and object sizes in their images to avoid and overcome errors. Even after repeating the task, participants identified only half of the errors, and the proportion of errors identified did not significantly differ from their first attempts. Based on these insights, we offer implications for designing accessible interfaces tailored to the needs of blind and low-vision users in identifying object recognition errors.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.