Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

Diverse Generation while Maintaining Semantic Coordination: A Diffusion-Based Data Augmentation Method for Object Detection (2408.02891v1)

Published 6 Aug 2024 in cs.CV

Abstract: Recent studies emphasize the crucial role of data augmentation in enhancing the performance of object detection models. However,existing methodologies often struggle to effectively harmonize dataset diversity with semantic coordination.To bridge this gap, we introduce an innovative augmentation technique leveraging pre-trained conditional diffusion models to mediate this balance. Our approach encompasses the development of a Category Affinity Matrix, meticulously designed to enhance dataset diversity, and a Surrounding Region Alignment strategy, which ensures the preservation of semantic coordination in the augmented images. Extensive experimental evaluations confirm the efficacy of our method in enriching dataset diversity while seamlessly maintaining semantic coordination. Our method yields substantial average improvements of +1.4AP, +0.9AP, and +3.4AP over existing alternatives on three distinct object detection models, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com