Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Integrated Approach to Importance Sampling and Machine Learning for Efficient Monte Carlo Estimation of Distortion Risk Measures in Black Box Models (2408.02401v2)

Published 5 Aug 2024 in q-fin.RM

Abstract: Distortion risk measures play a critical role in quantifying risks associated with uncertain outcomes. Accurately estimating these risk measures in the context of computationally expensive simulation models that lack analytical tractability is fundamental to effective risk management and decision making. In this paper, we propose an efficient important sampling method for distortion risk measures in such models that reduces the computational cost through machine learning. We demonstrate the applicability and efficiency of the Monte Carlo method in numerical experiments on various distortion risk measures and models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: