Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cross-Domain Semantic Segmentation on Inconsistent Taxonomy using VLMs (2408.02261v1)

Published 5 Aug 2024 in cs.CV

Abstract: The challenge of semantic segmentation in Unsupervised Domain Adaptation (UDA) emerges not only from domain shifts between source and target images but also from discrepancies in class taxonomies across domains. Traditional UDA research assumes consistent taxonomy between the source and target domains, thereby limiting their ability to recognize and adapt to the taxonomy of the target domain. This paper introduces a novel approach, Cross-Domain Semantic Segmentation on Inconsistent Taxonomy using Vision LLMs (CSI), which effectively performs domain-adaptive semantic segmentation even in situations of source-target class mismatches. CSI leverages the semantic generalization potential of Visual LLMs (VLMs) to create synergy with previous UDA methods. It leverages segment reasoning obtained through traditional UDA methods, combined with the rich semantic knowledge embedded in VLMs, to relabel new classes in the target domain. This approach allows for effective adaptation to extended taxonomies without requiring any ground truth label for the target domain. Our method has shown to be effective across various benchmarks in situations of inconsistent taxonomy settings (coarse-to-fine taxonomy and open taxonomy) and demonstrates consistent synergy effects when integrated with previous state-of-the-art UDA methods. The implementation is available at http://github.com/jkee58/CSI.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.