Dynamics of many-body localized systems: logarithmic lightcones and $\log \, t$-law of $α$-Rényi entropies
Abstract: In the context of the Many-Body-Localization phenomenology we consider arbitrarily large one-dimensional spin systems. The XXZ model with disorder is a prototypical example. Without assuming the existence of exponentially localized integrals of motion (LIOMs), but assuming instead a logarithmic lightcone we rigorously evaluate the dynamical generation of $ \alpha$-R\'enyi entropies, $ 0< \alpha<1 $ close to one, obtaining a $\log \, t$-law. Assuming the existence of LIOMs we prove that the Lieb-Robinson (L-R) bound of the system's dynamics has a logarithmic lightcone and show that the dynamical generation of the von Neumann entropy, from a generic initial product state, has for large times a $ \log \, t$-shape. L-R bounds, that quantify the dynamical spreading of local operators, may be easier to measure in experiments in comparison to global quantities such as entanglement.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.