Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Privacy in networks of quantum sensors (2408.01711v1)

Published 3 Aug 2024 in quant-ph

Abstract: We treat privacy in a network of quantum sensors where accessible information is limited to specific functions of the network parameters, and all other information remains private. We develop an analysis of privacy in terms of a manipulation of the quantum Fisher information matrix, and find the optimal state achieving maximum privacy in the estimation of linear combination of the unknown parameters in a network of quantum sensors. We also discuss the effect of uncorrelated noise on the privacy of the network. Moreover, we illustrate our results with an example where the goal is to estimate the average value of the unknown parameters in the network. In this example, we also introduce the notion of quasi-privacy ($\epsilon$-privacy), quantifying how close the state is to being private.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: