On the sub-adjacent Hopf algebra of the universal enveloping algebra of a post-Lie algebra (2408.01345v1)
Abstract: Recently the notion of post-Hopf algebra was introduced, with the universal enveloping algebra of a post-Lie algebra as the fundamental example. A novel property is that any cocommutative post-Hopf algebra gives rise to a sub-adjacent Hopf algebra with a generalized Grossman-Larson product. By twisting the post-Hopf product, we provide a combinatorial antipode formula for the sub-adjacent Hopf algebra of the universal enveloping algebra of a post-Lie algebra. Relating to such a sub-adjacent Hopf algebra, we also obtain a closed inverse formula for the Oudom-Guin isomorphism in the context of post-Lie algebras. Especially as a byproduct, we derive a cancellation-free antipode formula for the Grossman-Larson Hopf algebra of ordered trees through a concrete tree-grafting expression.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.