Distribution Aggregation via Continuous Thiele's Rules (2408.01054v1)
Abstract: We introduce the class of \textit{Continuous Thiele's Rules} that generalize the familiar \textbf{Thiele's rules} \cite{janson2018phragmens} of multi-winner voting to distribution aggregation problems. Each rule in that class maximizes $\sum_if(\pii)$ where $\pii$ is an agent $i$'s satisfaction and $f$ could be any twice differentiable, increasing and concave real function. Based on a single quantity we call the \textit{'Inequality Aversion'} of $f$ (elsewhere known as "Relative Risk Aversion"), we derive bounds on the Egalitarian loss, welfare loss and the approximation of \textit{Average Fair Share}, leading to a quantifiable, continuous presentation of their inevitable trade-offs. In particular, we show that the Nash Product Rule satisfies\textit{ Average Fair Share} in our setting.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.