Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Automatic Pull Request Description Generation Using LLMs: A T5 Model Approach (2408.00921v1)

Published 1 Aug 2024 in cs.LG, cs.CL, and cs.SE

Abstract: Developers create pull request (PR) descriptions to provide an overview of their changes and explain the motivations behind them. These descriptions help reviewers and fellow developers quickly understand the updates. Despite their importance, some developers omit these descriptions. To tackle this problem, we propose an automated method for generating PR descriptions based on commit messages and source code comments. This method frames the task as a text summarization problem, for which we utilized the T5 text-to-text transfer model. We fine-tuned a pre-trained T5 model using a dataset containing 33,466 PRs. The model's effectiveness was assessed using ROUGE metrics, which are recognized for their strong alignment with human evaluations. Our findings reveal that the T5 model significantly outperforms LexRank, which served as our baseline for comparison.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.