Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Generation of Pull Request Descriptions (1909.06987v1)

Published 16 Sep 2019 in cs.SE

Abstract: Enabled by the pull-based development model, developers can easily contribute to a project through pull requests (PRs). When creating a PR, developers can add a free-form description to describe what changes are made in this PR and/or why. Such a description is helpful for reviewers and other developers to gain a quick understanding of the PR without touching the details and may reduce the possibility of the PR being ignored or rejected. However, developers sometimes neglect to write descriptions for PRs. For example, in our collected dataset with over 333K PRs, more than 34% of the PR descriptions are empty. To alleviate this problem, we propose an approach to automatically generate PR descriptions based on the commit messages and the added source code comments in the PRs. We regard this problem as a text summarization problem and solve it using a novel sequence-to-sequence model. To cope with out-of-vocabulary words in software artifacts and bridge the gap between the training loss function of the sequence-to-sequence model and the evaluation metric ROUGE, which has been shown to correspond to human evaluation, we integrate the pointer generator and directly optimize for ROUGE using reinforcement learning and a special loss function. We build a dataset with over 41K PRs and evaluate our approach on this dataset through ROUGE and a human evaluation. Our evaluation results show that our approach outperforms two baselines by significant margins.

Citations (93)

Summary

We haven't generated a summary for this paper yet.