Papers
Topics
Authors
Recent
2000 character limit reached

Multiscale topology optimization of functionally graded lattice structures based on physics-augmented neural network material models

Published 1 Aug 2024 in cs.CE | (2408.00510v1)

Abstract: We present a new framework for the simultaneous optimiziation of both the topology as well as the relative density grading of cellular structures and materials, also known as lattices. Due to manufacturing constraints, the optimization problem falls into the class of NP-complete mixed-integer nonlinear programming problems. To tackle this difficulty, we obtain a relaxed problem from a multiplicative split of the relative density and a penalization approach. The sensitivities of the objective function are derived such that any gradient-based solver might be applied for the iterative update of the design variables. In a next step, we introduce a material model that is parametric in the design variables of interest and suitable to describe the isotropic deformation behavior of quasi-stochastic lattices. For that, we derive and implement further physical constraints and enhance a physics-augmented neural network from the literature that was formulated initially for rhombic materials. Finally, to illustrate the applicability of the method, we incorporate the material model into our computational framework and exemplary optimize two-and three-dimensional benchmark structures as well as a complex aircraft component.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.