Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Polynomial quasi-Trefftz DG for PDEs with smooth coefficients: elliptic problems (2408.00392v2)

Published 1 Aug 2024 in math.NA and cs.NA

Abstract: Trefftz schemes are high-order Galerkin methods whose discrete spaces are made of elementwise exact solutions of the underlying PDE. Trefftz basis functions can be easily computed for many PDEs that are linear, homogeneous, and have piecewise-constant coefficients. However, if the equation has variable coefficients, exact solutions are generally unavailable. Quasi-Trefftz methods overcome this limitation relying on elementwise "approximate solutions" of the PDE, in the sense of Taylor polynomials. We define polynomial quasi-Trefftz spaces for general linear PDEs with smooth coefficients and source term, describe their approximation properties and, under a non-degeneracy condition, provide a simple algorithm to compute a basis. We then focus on a quasi-Trefftz DG method for variable-coefficient elliptic diffusion-advection-reaction problems, showing stability and high-order convergence of the scheme. The main advantage over standard DG schemes is the higher accuracy for comparable numbers of degrees of freedom. For non-homogeneous problems with piecewise-smooth source term we propose to construct a local quasi-Trefftz particular solution and then solve for the difference. Numerical experiments in 2 and 3 space dimensions show the excellent properties of the method both in diffusion-dominated and advection-dominated problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube