Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global space-time Trefftz DG schemes for the time-dependent linear wave equation (2108.06443v2)

Published 14 Aug 2021 in math.NA and cs.NA

Abstract: In this paper we are concerned with Trefftz discretizations of the time-dependent linear wave equation in anisotropic media in arbitrary space dimensional domains $\Omega \subset \mathbb{R}d~ (d\in \mathbb{N})$. We propose two variants of the Trefftz DG method, define novel plane wave basis functions based on rigorous choices of scaling transformations and coordinate transformations, and prove that the corresponding approximate solutions possess optimal-order error estimates with respect to the meshwidth $h$ and the condition number of the coefficient matrices, respectively. Besides, we propose the global Trefftz DG method combined with local DG methods to solve the time-dependent linear nonhomogeneous wave equation in anisotropic media. In particular, the error analysis holds for the (nonhomogeneous) Dirichlet, Neumann, and mixed boundary conditions from the original PDEs. Furthermore, a strategy to discretize the model in heterogeneous media is proposed. The numerical results verify the validity of the theoretical results, and show that the resulting approximate solutions possess high accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.