Papers
Topics
Authors
Recent
2000 character limit reached

Constructing Multiresolution Analysis via Wavelet Packets on Sobolev Space in Local Fields (2408.00028v1)

Published 31 Jul 2024 in math.RA

Abstract: We define Sobolev spaces $H{\mathfrak{s}}(K_q)$ over a local field $K_q$ of finite characteristic $p>0$, where $q=pc$ for a prime $p$ and $c\in \mathbb{N}$. This paper introduces novel fractal functions, such as the Weierstrass type and 3-adic Cantor type, as intriguing examples within these spaces and a few others. Employing prime elements, we develop a Multi-Resolution Analysis (MRA) and examine wavelet expansions, focusing on the orthogonality of both basic and fractal wavelet packets at various scales. We utilize convolution theory to construct Haar wavelet packets and demonstrate the orthogonality of all discussed wavelet packets within $H{\mathfrak{s}}(K_q)$, enhancing the analytical capabilities of these Sobolev spaces.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: