Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Distributed Adaptive Time-Varying Optimization with Global Asymptotic Convergence (2407.20897v2)

Published 30 Jul 2024 in eess.SY, cs.SY, and math.OC

Abstract: In this note, we study distributed time-varying optimization for a multi-agent system. We first focus on a class of time-varying quadratic cost functions, and develop a new distributed algorithm that integrates an average estimator and an adaptive optimizer, with both bridged by a Dead Zone Algorithm. Based on a composite Lyapunov function and finite escape-time analysis, we prove the closed-loop global asymptotic convergence to the optimal solution under mild assumptions. Particularly, the introduction of the estimator relaxes the requirement for the Hessians of cost functions, and the integrated design eliminates the waiting time required in the relevant literature for estimating global parameter during algorithm implementation. We then extend this result to a more general class of time-varying cost functions. Two examples are used to verify the proposed designs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009.
  2. J. Wang and N. Elia, “Control approach to distributed optimization,” in 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).   IEEE, 2010, pp. 557–561.
  3. B. Gharesifard and J. Cortés, “Distributed continuous-time convex optimization on weight-balanced digraphs,” IEEE Trans. Autom. Control, vol. 59, no. 3, pp. 781–786, 2013.
  4. M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Third International Symposium on Information Processing in Sensor Networks, 2004, pp. 20–27.
  5. S. Bhattacharya and V. Kumar, “Distributed optimization with pairwise constraints and its application to multi-robot path planning,” Robotics: Science and Systems VI, vol. 177, Jun. 2011.
  6. Z. Qin, L. Jiang, T. Liu, and Z.-P. Jiang, “Distributed optimization for uncertain Euler–Lagrange systems with local and relative measurements,” Automatica, vol. 139, p. 110113, 2022.
  7. K. Mahmoud, N. Yorino, and A. Ahmed, “Optimal distributed generation allocation in distribution systems for loss minimization,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 960–969, 2016.
  8. W. Huang, W. Zheng, and D. J. Hill, “Distributionally robust optimal power flow in multi-microgrids with decomposition and guaranteed convergence,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 43–55, Jan. 2021.
  9. W. Su, “Traffic engineering and time-varying convex optimization,” Ph.D. dissertation, Dept. Elect. Eng., The Pennsylvania State Univ., State College, PA, USA, 2009.
  10. A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Giannakis, “Time-varying convex optimization: Time-structured algorithms and applications,” Proc. IEEE, vol. 108, no. 11, pp. 2032–2048, 2020.
  11. X. Li, L. Xie, and N. Li, “A survey on distributed online optimization and online games,” Annu. Rev. Control, vol. 56, p. 100904, 2023.
  12. T. Hatanaka, R. Funada, G. Gezer, and M. Fujita, “Distributed visual 3-D localization of a human using pedestrian detection algorithm: A passivity-based approach,” IFAC-PapersOnLine, vol. 49, no. 22, pp. 210–215, 2016.
  13. O. Shorinwa, T. Halsted, J. Yu, and M. Schwager, “Distributed optimization methods for multi-robot systems: Part 1—a tutorial,” IEEE Robot. Autom. Mag., pp. 2–19, 2024.
  14. X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu, and F. Gao, “Swarm of micro flying robots in the wild,” Sci. Robot., vol. 7, no. 66, p. eabm5954, 2022.
  15. H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri, and A. Tuncer, “UAV-enabled intelligent transportation systems for the smart city: Applications and challenges,” IEEE Commun. Mag., vol. 55, no. 3, pp. 22–28, Mar. 2017.
  16. Y. Zou, Z. Meng, and Y. Hong, “Adaptive distributed optimization algorithms for Euler–Lagrange systems,” Automatica, vol. 119, p. 109060, Sep. 2020.
  17. A. Simonetto, A. Mokhtari, A. Koppel, G. Leus, and A. Ribeiro, “A class of prediction-correction methods for time-varying convex optimization,” IEEE Trans. Signal Process., vol. 64, no. 17, pp. 4576–4591, 2016.
  18. M. Fazlyab, S. Paternain, V. M. Preciado, and A. Ribeiro, “Prediction-correction interior-point method for time-varying convex optimization,” IEEE Trans. Autom. Control, vol. 63, no. 7, pp. 1973–1986, 2018.
  19. S. Rahili and W. Ren, “Distributed continuous-time convex optimization with time-varying cost functions,” IEEE Trans. Autom. Control, vol. 62, no. 4, pp. 1590–1605, 2017.
  20. C. Wu, H. Fang, X. Zeng, Q. Yang, Y. Wei, and J. Chen, “Distributed continuous-time algorithm for time-varying optimization with affine formation constraints,” IEEE Trans. Autom. Control, vol. 68, no. 4, pp. 2615–2622, 2023.
  21. B. Wang, S. Sun, and W. Ren, “Distributed time-varying quadratic optimal resource allocation subject to nonidentical time-varying hessians with application to multiquadrotor hose transportation,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 10, pp. 6109–6119, 2022.
  22. S. Sun, J. Xu, and W. Ren, “Distributed continuous-time algorithms for time-varying constrained convex optimization,” IEEE Trans. Autom. Control, vol. 68, no. 7, pp. 3931–3946, 2023.
  23. Z. Ding, “Distributed time-varying optimization—an output regulation approach,” IEEE Trans. Cybern., 2022, DOI:10.1109/TCYB.2022. 3219295.
  24. B. Huang, Y. Zou, Z. Meng, and W. Ren, “Distributed time-varying convex optimization for a class of nonlinear multiagent systems,” IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 801–808, 2020.
  25. C. Sun, M. Ye, and G. Hu, “Distributed time-varying quadratic optimization for multiple agents under undirected graphs,” IEEE Trans. Autom. Control, vol. 62, no. 7, pp. 3687–3694, 2017.
  26. M. Santilli, A. Furchì, G. Oliva, and A. Gasparri, “A finite-time protocol for distributed time-varying optimization over a graph,” IEEE Trans. Control Netw. Syst., vol. 11, no. 1, pp. 53–64, 2024.
  27. Y. Zheng, Q. Liu, and J. Wang, “A specified-time convergent multiagent system for distributed optimization with a time-varying objective function,” IEEE Trans. Autom. Control, vol. 69, no. 2, pp. 1257–1264, 2024.
  28. F. Chen, Y. Cao, and W. Ren, “Distributed average tracking of multiple time-varying reference signals with bounded derivatives,” IEEE Trans. Autom. Control, vol. 57, no. 12, pp. 3169–3174, 2012.
  29. J. Cortes, “Discontinuous dynamical systems,” IEEE Control Syst. Mag., vol. 28, no. 3, pp. 36–73, 2008.
  30. S. S. Kia, J. Cortés, and S. Martínez, “Distributed convex optimization via continuous-time coordinate alorithms with discrete-time communication,” Automatica, vol. 55, pp. 254–264, 2015.
  31. L. Jiang, Z.-G. Wu, and L. Wang, “Distributed continuous-time optimization with uncertain time-varying quadratic cost functions.” [Online]. Available: https://arxiv.org/abs/2310.13541
  32. N. Bastianello, R. Carli, and S. Zampieri, “Internal model-based online optimization,” IEEE Trans. Autom. Control, vol. 69, no. 1, pp. 689–696, 2024.
  33. A. Merwaday and I. Guvenc, “UAV assisted heterogeneous networks for public safety communications,” in 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2015.
  34. N. Zhao, W. Lu, M. Sheng, Y. Chen, J. Tang, F. R. Yu, and K.-K. Wong, “UAV-assisted emergency networks in disasters,” IEEE Wireless Commun. Mag., vol. 26, no. 1, pp. 45–51, Feb. 2019.
  35. R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1520–1533, 2004.
  36. L. Wang and F. Xiao, “Finite-time consensus problems for networks of dynamic agents,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 950–955, 2010.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube