Generalized replicator dynamics based on mean-field pairwise comparison dynamic
Abstract: The pairwise comparison dynamic is a forward ordinary differential equation in a Banach space whose solution is a time-dependent probability measure to maximize utility based on a nonlinear and nonlocal protocol. It contains a wide class of evolutionary game models, such as replicator dynamics and its generalization. We present an inverse control approach to obtain a replicator-type pairwise comparison dynamic from the large discount limit of a mean field game (MFG) as a coupled forward-backward system. This methodology provides a new interpretation of replicator-type dynamics as a myopic perception limit of the dynamic programming. The cost function in the MFG is explicitly obtained to derive the generalized replicator dynamics. We present a finite difference method to compute these models such that the conservation and nonnegativity of the probability density and bounds of the value function can be numerically satisfied. We conduct a computational convergence study of a large discount limit, focusing on potential games and an energy management problem under several conditions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.