Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STT-RAM-based Hierarchical In-Memory Computing (2407.19637v1)

Published 29 Jul 2024 in cs.CY and cs.AR

Abstract: In-memory computing promises to overcome the von Neumann bottleneck in computer systems by performing computations directly within the memory. Previous research has suggested using Spin-Transfer Torque RAM (STT-RAM) for in-memory computing due to its non-volatility, low leakage power, high density, endurance, and commercial viability. This paper explores hierarchical in-memory computing, where different levels of the memory hierarchy are augmented with processing elements to optimize workload execution. The paper investigates processing in memory (PiM) using non-volatile STT-RAM and processing in cache (PiC) using volatile STT-RAM with relaxed retention, which helps mitigate STT-RAM's write latency and energy overheads. We analyze tradeoffs and overheads associated with data movement for PiC versus write overheads for PiM using STT-RAMs for various workloads. We examine workload characteristics, such as computational intensity and CPU-dependent workloads with limited instruction-level parallelism, and their impact on PiC/PiM tradeoffs. Using these workloads, we evaluate computing in STT-RAM versus SRAM at different cache hierarchy levels and explore the potential of heterogeneous STT-RAM cache architectures with various retention times for PiC and CPU-based computing. Our experiments reveal significant advantages of STT-RAM-based PiC over PiM for specific workloads. Finally, we describe open research problems in hierarchical in-memory computing architectures to further enhance this paradigm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Dhruv Gajaria (4 papers)
  2. Kevin Antony Gomez (1 paper)
  3. Tosiron Adegbija (23 papers)

Summary

We haven't generated a summary for this paper yet.