Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HALLS: An Energy-Efficient Highly Adaptable Last Level STT-RAM Cache for Multicore Systems (1905.07511v1)

Published 18 May 2019 in cs.AR, cs.DC, and cs.ET

Abstract: Spin-Transfer Torque RAM (STT-RAM) is widely considered a promising alternative to SRAM in the memory hierarchy due to STT-RAM's non-volatility, low leakage power, high density, and fast read speed. The STT-RAM's small feature size is particularly desirable for the last-level cache (LLC), which typically consumes a large area of silicon die. However, long write latency and high write energy still remain challenges of implementing STT-RAMs in the CPU cache. An increasingly popular method for addressing this challenge involves trading off the non-volatility for reduced write speed and write energy by relaxing the STT-RAM's data retention time. However, in order to maximize energy saving potential, the cache configurations, including STT-RAM's retention time, must be dynamically adapted to executing applications' variable memory needs. In this paper, we propose a highly adaptable last level STT-RAM cache (HALLS) that allows the LLC configurations and retention time to be adapted to applications' runtime execution requirements. We also propose low-overhead runtime tuning algorithms to dynamically determine the best (lowest energy) cache configurations and retention times for executing applications. Compared to prior work, HALLS reduced the average energy consumption by 60.57% in a quad-core system, while introducing marginal latency overhead.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kyle Kuan (5 papers)
  2. Tosiron Adegbija (23 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.