Papers
Topics
Authors
Recent
2000 character limit reached

Nearest-Neighbours Neural Network architecture for efficient sampling of statistical physics models (2407.19483v2)

Published 28 Jul 2024 in cond-mat.dis-nn, cond-mat.stat-mech, and physics.comp-ph

Abstract: The task of sampling efficiently the Gibbs-Boltzmann distribution of disordered systems is important both for the theoretical understanding of these models and for the solution of practical optimization problems. Unfortunately, this task is known to be hard, especially for spin glasses at low temperatures. Recently, many attempts have been made to tackle the problem by mixing classical Monte Carlo schemes with newly devised Neural Networks that learn to propose smart moves. In this article we introduce the Nearest-Neighbours Neural Network (4N) architecture, a physically-interpretable deep architecture whose number of parameters scales linearly with the size of the system and that can be applied to a large variety of topologies. We show that the 4N architecture can accurately learn the Gibbs-Boltzmann distribution for the two-dimensional Edwards-Anderson model, and specifically for some of its most difficult instances. In particular, it captures properties such as the energy, the correlation function and the overlap probability distribution. Finally, we show that the 4N performance increases with the number of layers, in a way that clearly connects to the correlation length of the system, thus providing a simple and interpretable criterion to choose the optimal depth.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.